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Model Predictive Control Toolbox Product Description
Design and simulate model predictive controllers

Model Predictive Control Toolbox provides functions, an app, and Simulink® blocks for designing and
simulating controllers using linear and nonlinear model predictive control (MPC). The toolbox lets
you specify plant and disturbance models, horizons, constraints, and weights. By running closed-loop
simulations, you can evaluate controller performance.

You can adjust the behavior of the controller by varying its weights and constraints at run time. The
toolbox provides deployable optimization solvers and also enables you to use a custom solver. To
control a nonlinear plant, you can implement adaptive, gain-scheduled, and nonlinear MPC
controllers. For applications with fast sample rates, the toolbox lets you generate an explicit model
predictive controller from a regular controller or implement an approximate solution.

For rapid prototyping and embedded system implementation, including deployment of optimization
solvers, the toolbox supports C code and IEC 61131-3 Structured Text generation.

1 Introduction
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MPC Modeling
Model predictive controllers use plant, disturbance, and noise models for prediction and state
estimation. The model structure used in an MPC controller appears in the following illustration.

Plant Model
You can specify the plant model in one of the following linear-time-invariant (LTI) formats:

• Numeric LTI models — Transfer function (tf), state space (ss), zero-pole-gain (zpk)
• Identified models (requires System Identification Toolbox™) — idss, idtf, idproc, and idpoly

The MPC controller performs all estimation and optimization calculations using a discrete-time,
delay-free, state-space system with dimensionless input and output variables. Therefore, when you
specify a plant model in the MPC controller, the software performs the following, if needed:

1 Conversion to state space — The ss command converts the supplied model to an LTI state-space
model.

2 Discretization or resampling — If the model sample time differs from the MPC controller sample
time (defined in the Ts property), one of the following occurs:

• If the model is continuous time, the c2d command converts it to a discrete-time LTI object
using the controller sample time.

• If the model is discrete time, the d2d command resamples it to generate a discrete-time LTI
object using the controller sample time.

3 Delay removal — If the discrete-time model includes any input, output, or internal delays, the
absorbDelay command replaces them with the appropriate number of poles at z = 0, increasing
the total number of discrete states. The InputDelay, OutputDelay, and InternalDelay
properties of the resulting state-space model are all zero.

2 Building Models
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4 Conversion to dimensionless input and output variables — The MPC controller enables you to
specify a scale factor for each plant input and output variable. If you do not specify scale factors,
they default to 1. The software converts the plant input and output variables to dimensionless
form as follows:

xp k + 1 = Apxp k + BSiup k

yp k = So
−1Cxp k + So

−1DSiup k .

where Ap, B, C, and D are the constant zero-delay state-space matrices from step 3, and:

• Si is a diagonal matrix of input scale factors in engineering units.
• So is a diagonal matrix of output scale factors in engineering units.
• xp is the state vector from step 3 in engineering units (including any absorbed delay states).

No scaling is performed on state variables.
• up is a vector of dimensionless plant input variables, including manipulated variables,

measured disturbances, and unmeasured input disturbances.
• yp is a vector of dimensionless plant output variables.

The resulting plant model has the following equivalent form:

xp k + 1 = Apxp k + Bpuu k + Bpvv k + Bpdd k
yp k = Cpxp k + Dpuu k + Dpvv k + Dpdd k .

Here, Cp = So
−1C, Bpu, Bpv, and Bpd are the corresponding columns of BSi. Also, Dpu, Dpv, and Dpd

are the corresponding columns of So
−1DSi. Finally, u(k), v(k), and d(k) are the dimensionless

manipulated variables, measured disturbances, and unmeasured input disturbances, respectively.

The MPC controller enforces the restriction of Dpu = 0, which means that the controller does not
allow direct feedthrough from any manipulated variable to any plant output.

Input Disturbance Model
If your plant model includes unmeasured input disturbances, d(k), the input disturbance model
specifies the signal type and characteristics of d(k). See “Controller State Estimation” for more
information about the model.

The getindist command provides access to the model in use.

The input disturbance model is a key factor that influences the following controller performance
attributes:

• Dynamic response to apparent disturbances — The character of the controller response when the
measured plant output deviates from its predicted trajectory, due to an unknown disturbance or
modeling error.

• Asymptotic rejection of sustained disturbances — If the disturbance model predicts a sustained
disturbance, controller adjustments continue until the plant output returns to its desired
trajectory, emulating a classical integral feedback controller.

You can provide the input disturbance model as an LTI state-space (ss), transfer function (tf), or
zero-pole-gain (zpk) object using setindist. The MPC controller converts the input disturbance

 MPC Modeling

2-3



model to a discrete-time, delay-free, LTI state-space system using the same steps used to convert the
plant model on page 2-2. The result is:

xid k + 1 = Aidxid k + Bidwid k
d k = Cidxid k + Didwid k .

where Aid, Bid, Cid, and Did are constant state-space matrices, and:

• xid(k) is a vector of nxid ≥ 0 input disturbance model states.
• dk(k) is a vector of nd dimensionless unmeasured input disturbances.
• wid(k) is a vector of nid ≥ 1 dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not provide an input disturbance model, then the controller uses a default model, which has
integrators with dimensionless unity gain added to its outputs. An integrator is added for each
unmeasured input disturbance, unless doing so would cause a violation of state observability. In this
case, a static system with dimensionless unity gain is used instead.

Output Disturbance Model
The output disturbance model is a special case of the more general input disturbance model. Its
output, yod(k), is directly added to the plant output rather than affecting the plant states. The output
disturbance model specifies the signal type and characteristics of yod(k), and it is often used in
practice. See “Controller State Estimation” for more details about the model.

The getoutdist command provides access to the output disturbance model in use.

You can specify a custom output disturbance model as an LTI state-space (ss), transfer function (tf),
or zero-pole-gain (zpk) object using setoutdist. Using the same steps as for the plant model on
page 2-2, the MPC controller converts the specified output disturbance model to a discrete-time,
delay-free, LTI state-space system. The result is:

xod k + 1 = Aodxod k + Bodwod k
yod k = Codxod k + Dodwod k .

where Aod, Bod, Cod, and Dod are constant state-space matrices, and:

• xod(k) is a vector of nxod ≥ 1 output disturbance model states.
• yod(k) is a vector of ny dimensionless output disturbances to be added to the dimensionless plant

outputs.
• wod(k) is a vector of nod dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not specify an output disturbance model, then the controller uses a default model, which has
integrators with dimensionless unity gain added to some or all of its outputs. These integrators are
added according to the following rules:

• No disturbances are estimated, that is no integrators are added, for unmeasured plant outputs.
• An integrator is added for each measured output in order of decreasing output weight.

• For time-varying weights, the sum of the absolute values over time is considered for each
output channel.

2 Building Models
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• For equal output weights, the order within the output vector is followed.
• For each measured output, an integrator is not added if doing so would cause a violation of state

observability. Instead, a gain with a value of zero is used instead.

If there is an input disturbance model, then the controller adds any default integrators to that model
before constructing the default output disturbance model.

Measurement Noise Model
One controller design objective is to distinguish disturbances, which require a response, from
measurement noise, which should be ignored. The measurement noise model specifies the expected
noise type and characteristics. See “Controller State Estimation” for more details about the model.

Using the same steps as for the plant model on page 2-2, the MPC controller converts the
measurement noise model to a discrete-time, delay-free, LTI state-space system. The result is:

xn k + 1 = Anxn k + Bnwn k
yn k = Cnxn k + Dnwn k .

Here, An, Bn, Cn, and Dn are constant state space matrices, and:

• xn(k) is a vector of nxn ≥ 0 noise model states.
• yn(k) is a vector of nym dimensionless noise signals to be added to the dimensionless measured

plant outputs.
• wn(k) is a vector of nn ≥ 1 dimensionless white noise inputs, assumed to have zero mean and unit

variance.

If you do not supply a noise model, the default is a unity static gain: nxn = 0, Dn is an nym-by-nym
identity matrix, and An, Bn, and Cn are empty.

For an mpc controller object, MPCobj, the property MPCobj.Model.Noise provides access to the
measurement noise model.

Note If the minimum eigenvalue of DnDn
T is less than 1x10–8, the MPC controller adds 1x10–4 to each

diagonal element of Dn. This adjustment makes a successful default Kalman gain calculation more
likely.

See Also

More About
• “Controller State Estimation”
• “Adjust Disturbance and Noise Models”
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Signal Types

Inputs
The plant inputs are the independent variables affecting the plant. As shown in “MPC Modeling” on
page 2-2, there are three types:

Measured disturbances

The controller can't adjust them, but uses them for feedforward compensation.

Manipulated variables

The controller adjusts these in order to achieve its goals.

Unmeasured disturbances

These are independent inputs of which the controller has no direct knowledge, and for which it must
compensate.

Outputs
The plant outputs are the dependent variables (outcomes) you wish to control or monitor. As shown in
“MPC Modeling” on page 2-2, there are two types:

Measured outputs

The controller uses these to estimate unmeasured quantities and as feedback on the success of its
adjustments.

Unmeasured outputs

The controller estimates these based on available measurements and the plant model. The controller
can also hold unmeasured outputs at setpoints or within constraint boundaries.

You must specify the input and output types when designing the controller. See “Input and Output
Types” on page 2-10 for more details.

See Also

More About
• “MPC Modeling” on page 2-2

2 Building Models
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Construct Linear Time Invariant Models
Model Predictive Control Toolbox software supports the same LTI model formats as does Control
System Toolbox software. You can use whichever is most convenient for your application and convert
from one format to another. For more details, see “Basic Models”.

Transfer Function Models
A transfer function (TF) relates a particular input/output pair. For example, if u(t) is a plant input and
y(t) is an output, the transfer function relating them might be:

Y(s)
U(s) = G(s) = s + 2

s2 + s + 10
e−1.5s

This TF consists of a numerator polynomial, s+2, a denominator polynomial, s2+s+10, and a delay,
which is 1.5 time units here. You can define G using Control System Toolbox tf function:

Gtf1 = tf([1 2], [1 1 10],'OutputDelay',1.5)

Transfer function:
                 s + 2
exp(-1.5*s) * ------------
              s^2 + s + 10

Zero/Pole/Gain Models
Like the TF format, the zero/pole/gain (ZPK) format relates an input/output pair. The difference is that
the ZPK numerator and denominator polynomials are factored, as in

G(s) = 2.5 s + 0.45
(s + 0.3)(s + 0.1 + 0.7i)(s + 0.1− 0.7i)

(zeros and/or poles are complex numbers in general).

You define the ZPK model by specifying the zero(s), pole(s), and gain as in

poles = [-0.3, -0.1+0.7*i, -0.1-0.7*i];
Gzpk1 = zpk(-0.45,poles,2.5);

State-Space Models
The state-space format is convenient if your model is a set of LTI differential and algebraic equations.
For example, consider the following linearized model of a continuous stirred-tank reactor (CSTR)
involving an exothermic (heat-generating) reaction [1].

dC′A
dt = a11C′A + a12T′ + b11T′c + b12C′Ai

dT′
dt = a21C′A + a22T′ + b21T′c + b22C′Ai

where CA is the concentration of a key reactant, T is the temperature in the reactor, Tc is the coolant
temperature, CAi is the reactant concentration in the reactor feed, and aij and bij are constants. See

 Construct Linear Time Invariant Models
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the process schematic in “CSTR Schematic” on page 2-8. The primes (e.g., C′A) denote a deviation
from the nominal steady-state condition at which the model has been linearized.

CSTR Schematic

Measurement of reactant concentrations is often difficult, if not impossible. Let us assume that T is a
measured output, CA is an unmeasured output, Tc is a manipulated variable, and CAi is an unmeasured
disturbance.

The model fits the general state-space format

dx
dt = Ax + Bu

y = Cx + Du

where

x =
C′A
T′

, u =
T′c
C′Ai

, y =
T′

C′A

A =
a11 a12
a21 a22

, B =
b11 b12
b21 b22

, C =
0 1
1 0

, D =
0 0
0 0

The following code shows how to define such a model for some specific values of the aij and bij
constants:

A = [-0.0285  -0.0014
     -0.0371  -0.1476];
B = [-0.0850   0.0238
      0.0802   0.4462];
C = [0 1
     1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

This defines a continuous-time state-space model. If you do not specify a sampling period, a default
sampling value of zero applies. You can also specify discrete-time state-space models. You can specify
delays in both continuous-time and discrete-time models.

Note In the CSTR example, the D matrix is zero and the output does not instantly respond to change
in the input. The Model Predictive Control Toolbox software prohibits direct (instantaneous)
feedthrough from a manipulated variable to an output. For example, the CSTR model could include

2 Building Models
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direct feedthrough from the unmeasured disturbance, CAi, to either CA or T but direct feedthrough
from Tc to either output would violate this restriction. If the model had direct feedthrough from Tc,
you can add a small delay at this input to circumvent the problem.

LTI Object Properties
The ss function in the last line of the above code creates a state-space model, CSTR, which is an LTI
object. The tf and zpk commands described in “Transfer Function Models” on page 2-7 and “Zero/
Pole/Gain Models” on page 2-7 also create LTI objects. Such objects contain the model parameters as
well as optional properties.

LTI Properties for the CSTR Example

The following code sets some of the CSTR model's optional properties:

CSTR.InputName = {'T_c','C_A_i'};
CSTR.OutputName = {'T','C_A'};
CSTR.StateName = {'C_A','T'};
CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;
CSTR

The first three lines specify labels for the input, output and state variables. The next four specify the
signal type for each input and output. The designations MV, UD, MO, and UO mean manipulated
variable, unmeasured disturbance, measured output, and unmeasured output. (See “Signal Types” on
page 2-6 for definitions.) For example, the code specifies that input 2 of model CSTR is an
unmeasured disturbance. The last line causes the LTI object to be displayed, generating the following
lines in the MATLAB® Command Window:

A = 
            C_A        T
   C_A  -0.0285  -0.0014
   T    -0.0371  -0.1476
 
B = 
           T_c    C_Ai
   C_A  -0.085  0.0238
   T    0.0802  0.4462

C = 
        C_A    T
   T      0    1
   C_A    1    0
 
 
D = 
         T_c  C_Ai
   T       0     0
   C_A     0     0
 
Input groups:       
    Name    Channels
     MV        1    
     UD        2    
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Output groups:      
    Name    Channels
     MO        1    
     UO        2    
                    
Continuous-time model

Input and Output Names

The optional InputName and OutputName properties affect the model displays, as in the above
example. The software also uses the InputName and OutputName properties to label plots and
tables. In that context, the underscore character causes the next character to be displayed as a
subscript.

Input and Output Types
General Case

As mentioned in “Signal Types” on page 2-6, Model Predictive Control Toolbox software supports
three input types and two output types. In a Model Predictive Control Toolbox design, designation of
the input and output types determines the controller dimensions and has other important
consequences.

For example, suppose your plant structure were as follows:

Plant Inputs Plant Outputs
Two manipulated variables (MVs) Three measured outputs (MOs)
One measured disturbance (MD) Two unmeasured outputs (UOs)
Two unmeasured disturbances (UDs)  

The resulting controller has four inputs (the three MOs and the MD) and two outputs (the MVs). It
includes feedforward compensation for the measured disturbance, and assumes that you wanted to
include the unmeasured disturbances and outputs as part of the regulator design.

If you didn't want a particular signal to be treated as one of the above types, you could do one of the
following:

• Eliminate the signal before using the model in controller design.
• For an output, designate it as unmeasured, then set its weight to zero.
• For an input, designate it as an unmeasured disturbance, then define a custom state estimator

that ignores the input.

Note By default, the software assumes that unspecified plant inputs are manipulated variables,
and unspecified outputs are measured. Thus, if you didn't specify signal types in the above
example, the controller would have four inputs (assuming all plant outputs were measured) and
five outputs (assuming all plant inputs were manipulated variables).

For model CSTR, the default Model Predictive Control Toolbox assumptions are incorrect. You must
set its InputGroup and OutputGroup properties, as illustrated in the above code, or modify the
default settings when you load the model into MPC Designer.

Use setmpcsignals to make type definition. For example:
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CSTR = setmpcsignals(CSTR,'UD',2,'UO',2);

sets InputGroup and OutputGroup to the same values as in the previous example. The CSTR
display would then include the following lines:

Input groups:              
       Name        Channels
    Unmeasured        2    
    Manipulated       1    
                           

Output groups:             
       Name       Channels 
    Unmeasured       2     
     Measured        1     

Notice that setmpcsignals sets unspecified inputs to Manipulated and unspecified outputs to
Measured.

LTI Model Characteristics
Control System Toolbox software provides functions for analyzing LTI models. Some of the more
commonly used are listed below. Type the example code at the MATLAB prompt to see how they work
for the CSTR example.

Example Intended Result
dcgain(CSTR) Calculate gain matrix for the CSTR model's input/

output pairs.
impulse(CSTR) Graph CSTR model's unit-impulse response.
linearSystemAnalyzer(CSTR) Open the Linear System Analyzer with the CSTR

model loaded. You can then display model
characteristics by making menu selections.

pole(CSTR) Calculate CSTR model's poles (to check stability,
etc.).

step(CSTR) Graph CSTR model's unit-step response.
zero(CSTR) Compute CSTR model's transmission zeros.

References
[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,

Wiley, 2004, pp. 34–36 and 94–95.

See Also
setmpcsignals | ss | tf | zpk

More About
• “Specify Multi-Input Multi-Output Plants” on page 2-12
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Specify Multi-Input Multi-Output Plants
Most MPC applications involve plants with multiple inputs and outputs. You can use ss, tf, and zpk
to represent a MIMO plant model. For example, consider the following model of a distillation column
[1], which has been used in many advanced control studies:

y1
y2

=

12.8e−s

16.7s + 1
−18.9e−3s

21.0s + 1
3.8e−8.1s

14.9s + 1
6.6e−7s

10.9s + 1
−19.4e−3s

14.4s + 1
4.9e−3.4s

13.2s + 1

 
u1
u2
u3

Outputs y1 and y2 represent measured product purities. The controller manipulates the inputs, u1 and
u2, to hold each output at a specified setpoint. These inputs represent the flow rates of reflux and
reboiler steam, respectively. Input u3 is a measured feed flow rate disturbance.

The model consists of six transfer functions, one for each input/output pair. Each transfer function is
the first-order-plus-delay form often used by process control engineers.

Specify the individual transfer functions for each input/output pair. For example, g12 is the transfer
function from input u1 to output y2.

g11 = tf( 12.8, [16.7 1], 'IOdelay', 1.0,'TimeUnit','minutes');
g12 = tf(-18.9, [21.0 1], 'IOdelay', 3.0,'TimeUnit','minutes');
g13 = tf(  3.8, [14.9 1], 'IOdelay', 8.1,'TimeUnit','minutes');
g21 = tf(  6.6, [10.9 1], 'IOdelay', 7.0,'TimeUnit','minutes');
g22 = tf(-19.4, [14.4 1], 'IOdelay', 3.0,'TimeUnit','minutes');
g23 = tf(  4.9, [13.2 1], 'IOdelay', 3.4,'TimeUnit','minutes');

Define a MIMO system by creating a matrix of transfer function models.

DC = [g11 g12 g13
      g21 g22 g23];

Define the input and output signal names and specify the third input as a measured input
disturbance.

DC.InputName = {'Reflux Rate','Steam Rate','Feed Rate'};
DC.OutputName = {'Distillate Purity','Bottoms Purity'};
DC = setmpcsignals(DC,'MD',3);

-->Assuming unspecified input signals are manipulated variables.

Review the resulting system.

DC

DC =
 
  From input "Reflux Rate" to output...
                                      12.8
   Distillate Purity:  exp(-1*s) * ----------
                                   16.7 s + 1
 
                                   6.6
   Bottoms Purity:  exp(-7*s) * ----------
                                10.9 s + 1
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  From input "Steam Rate" to output...
                                    -18.9
   Distillate Purity:  exp(-3*s) * --------
                                   21 s + 1
 
                                  -19.4
   Bottoms Purity:  exp(-3*s) * ----------
                                14.4 s + 1
 
  From input "Feed Rate" to output...
                                        3.8
   Distillate Purity:  exp(-8.1*s) * ----------
                                     14.9 s + 1
 
                                     4.9
   Bottoms Purity:  exp(-3.4*s) * ----------
                                  13.2 s + 1
 
Input groups:              
       Name        Channels
     Measured         3    
    Manipulated      1,2   
                           
Output groups:          
      Name      Channels
    Measured      1,2   
                        
Continuous-time transfer function.

References
[1] Wood, R. K., and M. W. Berry, Chem. Eng. Sci., Vol. 28, pp. 1707, 1973.

See Also
setmpcsignals | ss | tf | zpk

Related Examples
• “Construct Linear Time Invariant Models” on page 2-7
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CSTR Model
The linearized model of a continuous stirred-tank reactor (CSTR) involving an exothermic (heat-
generating) reaction is represented by the following differential equations:

dC′A
dt = a11C′A + a12T′ + b11T′c + b12C′Ai

dT′
dt = a21C′A + a22T′ + b21T′c + b22C′Ai

where CA is the concentration of a key reactant, T is the temperature in the reactor, Tc is the coolant
temperature, CAi is the reactant concentration in the reactor feed, and aij and bij are constants. The
primes (e.g., C′A) denote a deviation from the nominal steady-state condition at which the model has
been linearized.

Measurement of reactant concentrations is often difficult, if not impossible. Let us assume that T is a
measured output, CA is an unmeasured output, Tc is a manipulated variable, and CAi is an unmeasured
disturbance.

The model fits the general state-space format

dx
dt = Ax + Bu

y = Cx + Du

where

x =
C′A
T′

, u =
T′c
C′Ai

, y =
T′

C′A

A =
a11 a12
a21 a22

, B =
b11 b12
b21 b22

, C =
0 1
1 0

, D =
0 0
0 0

The following code shows how to define such a model for some specific values of the aij and bij
constants:

A = [-0.0285  -0.0014
     -0.0371  -0.1476];
B = [-0.0850   0.0238
      0.0802   0.4462];
C = [0 1
     1 0];
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D = zeros(2,2);
CSTR = ss(A,B,C,D);

The following code sets some of the CSTR model's optional properties:

CSTR.InputName = {'T_c', 'C_A_i'};
CSTR.OutputName = {'T', 'C_A'};
CSTR.StateName = {'C_A', 'T'};
CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;

To view the properties of CSTR, enter:

CSTR
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Linearize Simulink Models
Generally, real systems are nonlinear. To design an MPC controller for a nonlinear system, you can
model the plant in Simulink.

Although an MPC controller can regulate a nonlinear plant, the model used within the controller must
be linear. In other words, the controller employs a linear approximation of the nonlinear plant. The
accuracy of this approximation significantly affects controller performance.

To obtain such a linear approximation, you linearize the nonlinear plant at a specified operating point.

Note Simulink Control Design software must be installed to linearize nonlinear Simulink models.

You can linearize a Simulink model:

• From the command line.
• Using the Model Linearizer.
• Using MPC Designer. For an example, see “Linearize Simulink Models Using MPC Designer” on

page 2-23.

Linearization Using MATLAB Code
This example shows how to obtain a linear model of a plant using a MATLAB script.

For this example the CSTR model, CSTR_OpenLoop, is linearized. The model inputs are the coolant
temperature (manipulated variable of the MPC controller), limiting reactant concentration in the feed
stream, and feed temperature. The model states are the temperature and concentration of the
limiting reactant in the product stream. Both states are measured and used for feedback control.

Obtain Steady-State Operating Point

The operating point defines the nominal conditions at which you linearize a model. It is usually a
steady-state condition.

Suppose that you plan to operate the CSTR with the output concentration, C_A, at 2 kmol/m3. The
nominal feed concentration is 10 kmol/m3, and the nominal feed temperature is 300 K. Create an
operating point specification object to define the steady-state conditions.

opspec = operspec('CSTR_OpenLoop');
opspec = addoutputspec(opspec,'CSTR_OpenLoop/CSTR',2);
opspec.Outputs(1).Known = true;
opspec.Outputs(1).y = 2;

op1 = findop('CSTR_OpenLoop',opspec);

 Operating point search report:
---------------------------------

 Operating point search report for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
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States: 
----------
(1.) CSTR_OpenLoop/CSTR/C_A
      x:             2      dx:      -4.6e-12 (0)
(2.) CSTR_OpenLoop/CSTR/T_K
      x:           373      dx:      5.48e-11 (0)

Inputs: 
----------
(1.) CSTR_OpenLoop/Coolant Temperature
      u:           299    [-Inf Inf]

Outputs: 
----------
(1.) CSTR_OpenLoop/CSTR
      y:             2    (2)

The calculated operating point is C_A = 2 kmol/m3 and T_K = 373 K. Notice that the steady-state
coolant temperature is also given as 299 K, which is the nominal value of the manipulated variable of
the MPC controller.

To specify:

• Values of known inputs, use the Input.Known and Input.u fields of opspec
• Initial guesses for state values, use the State.x field of opspec

For example, the following code specifies the coolant temperature as 305 K and initial guess values of
the C_A and T_K states before calculating the steady-state operating point:

opspec = operspec('CSTR_OpenLoop');
opspec.States(1).x = 1;
opspec.States(2).x = 400;
opspec.Inputs(1).Known = true;
opspec.Inputs(1).u = 305;

op2 = findop('CSTR_OpenLoop',opspec);

 Operating point search report:
---------------------------------

 Operating point search report for the Model CSTR_OpenLoop.
 (Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States: 
----------
(1.) CSTR_OpenLoop/CSTR/C_A
      x:          1.78      dx:      -4.8e-14 (0)
(2.) CSTR_OpenLoop/CSTR/T_K
      x:           377      dx:       5.4e-13 (0)

Inputs: 
----------
(1.) CSTR_OpenLoop/Coolant Temperature
      u:           305

Outputs: None 
----------
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Specify Linearization Inputs and Outputs

If the linearization input and output signals are already defined in the model, as in CSTR_OpenLoop,
then use the following to obtain the signal set.

io = getlinio('CSTR_OpenLoop');

Otherwise, specify the input and output signals as shown here.

io(1) = linio('CSTR_OpenLoop/Coolant Temperature',1,'input');
io(2) = linio('CSTR_OpenLoop/Feed Concentration',1,'input');
io(3) = linio('CSTR_OpenLoop/Feed Temperature',1,'input');
io(4) = linio('CSTR_OpenLoop/CSTR',1,'output');
io(5) = linio('CSTR_OpenLoop/CSTR',2,'output');

Linearize Model

Linearize the model using the specified operating point, op1, and input/output signals, io.

sys = linearize('CSTR_OpenLoop',op1,io)

sys =
 
  A = 
            C_A      T_K
   C_A       -5  -0.3427
   T_K    47.68    2.785
 
  B = 
        Coolant Temp  Feed Concent  Feed Tempera
   C_A             0             1             0
   T_K           0.3             0             1
 
  C = 
           C_A  T_K
   CSTR/1    0    1
   CSTR/2    1    0
 
  D = 
           Coolant Temp  Feed Concent  Feed Tempera
   CSTR/1             0             0             0
   CSTR/2             0             0             0
 
Continuous-time state-space model.

Linearization Using Model Linearizer in Simulink Control Design
This example shows how to linearize a Simulink model using the Model Linearizer, provided by the
Simulink Control Design software.

Open Simulink Model

This example uses the CSTR model, CSTR_OpenLoop.

open_system('CSTR_OpenLoop')
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Specify Linearization Inputs and Outputs

The linearization inputs and outputs are already specified for CSTR_OpenLoop. The input signals
correspond to the outputs from the Feed Concentration, Feed Temperature, and Coolant
Temperature blocks. The output signals are the inputs to the CSTR Temperature and Residual
Concentration blocks.

To specify a signal as a linearization input or output, first open the Linearization tab. To do so, in the
Simulink Apps gallery, click Linearization Manager. Then, in the Simulink model window, click the
signal.

To specify the signal as a:

• Linearization input, on the Linearization tab, in the Insert Analysis Points gallery, click Input
Perturbation.

• Linearization output, on the Linearization tab, in the Insert Analysis Points gallery, click
Output Measurement.

Open Model Linearizer

To open the Model Linearizer, in the Apps gallery, click Model Linearizer.

Specify Residual Concentration as Known Trim Constraint

In the Simulink model window, click the CA output signal from the CSTR block. Then, on the
Linearization tab, in the Insert Analysis Points gallery, click Trim Output Constraint.
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In the Model Linearizer, on the Linear Analysis tab, select Operating Point > Trim Model.

In the Trim the model dialog box, on the Outputs tab:

• Select the Known check box for Channel - 1 under CSTR_OpenLoop/CSTR.
• Set the corresponding Value to 2 kmol/m3.

Create and Verify Operating Point

In the Trim the model dialog box, click Start trimming.

The operating point op_trim1 displays in the Linear Analysis Workspace.
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Double click op_trim1 to view the resulting operating point.

In the Edit dialog box, select the Input tab.

The coolant temperature at steady state is 299 K, as desired.

Linearize Model

On the Linear Analysis tab, in the Operating Point drop-down list, select op_trim1.

Click Step to linearize the model.

This option creates the linear model linsys1 in the Linear Analysis Workspace and generates a
step response for this model. linsys1 uses optrim1 as its operating point.
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The step response from feed concentration to output CSTR/2 displays an interesting inverse
response. An examination of the linear model shows that CSTR/2 is the residual CSTR concentration,
C_A. When the feed concentration increases, C_A increases initially because more reactant is
entering, which increases the reaction rate. This rate increase results in a higher reactor
temperature (output CSTR/1), which further increases the reaction rate and C_A decreases
dramatically.

Export Linearization Result

If necessary, you can repeat any of these steps to improve your model performance. Once you are
satisfied with your linearization result, in the Model Linearizer, drag and drop it from the Linear
Analysis Workspace to the MATLAB Workspace. You can now use your linear model to design an
MPC controller.

See Also
Model Linearizer | linearize

Related Examples
• “Design MPC Controller in Simulink” on page 3-31
• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller at the Command Line” on page 3-20
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Linearize Simulink Models Using MPC Designer
This topic shows how to linearize Simulink models using MPC Designer. To do so, open the app from
a Simulink model that contains an MPC Controller block. For this example, use the
CSTR_ClosedLoop model.

sys = 'CSTR_ClosedLoop';
open_system(sys)

In the model window, double-click the MPC Controller block.

In the Block Parameters dialog box, ensure that the MPC Controller field is empty, and click Design
to open MPC Designer.

Using MPC Designer, you can define the MPC structure by linearizing the Simulink model. After you
define the initial MPC structure, you can also linearize the model at different operating points and
import the linearized plants.

Note  If a controller from the MATLAB workspace is specified in the MPC Controller field, the app
imports the specified controller. In this case, the MPC structure is derived from the imported
controller. In this case, you can still linearize the Simulink model and import the linearized plants.

Define MPC Structure By Linearization
This example shows how to define the plant input/output structure in MPC Designer by linearizing a
Simulink model.

On the MPC Designer tab, in the Structure section, click MPC Structure.
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Specify Signal Dimensions

In the Define MPC Structure By Linearization dialog box, in the MPC Structure section, if the
displayed signal dimensions do not match your model, click Change I/O Sizes to configure the
dimensions. Any unmeasured disturbances or unmeasured outputs in your model are not detected by
the MPC Controller block. Specify the dimensions for these signals.
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Tip In the MPC Controller Block Parameters dialog box, in the Default Conditions tab, you can
define the controller sample time and signal dimensions before opening MPC Designer.
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Select Plant Input/Output Signals

Before linearizing the model, assign Simulink signal lines to each MPC signal type in your model. The
app uses these signals as linearization inputs and outputs.

In the Simulink Signals for Plant Inputs and Simulink Signals for Plant Outputs sections, the
Block Path is automatically defined for manipulated variables, measured outputs, and measured
disturbances. MPC Designer detects these signals since they are connected to the MPC Controller
block. If your application has unmeasured disturbances or unmeasured outputs, select their
corresponding Simulink signal lines.

To choose a signal type, use the Selected option buttons.
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Click Select Signals.

In the Simulink model window, click the signal line corresponding to the selected signal type.

The signal is highlighted, and its block path is added to the Select signals dialog box.

In the Select signals dialog box, click Add Signal(s).

In the Define MPC Structure By Linearization dialog box, the Block Path for the selected signal type
updates.

Note If your model has measured disturbances, you must connect the corresponding plant inputs to
the signal line connected to the md port of the MPC Controller block. For more information, see
“Connect Measured Disturbances for Linearization” on page 2-38.

Specify Operating Point

In the Simulink Operating Point section, in the drop-down list, select an operating point at which
to linearize the model.

For information on the different operating point options, see “Specifying Operating Points” on page 2-
29.
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Note If you select an option that generates multiple operating points for linearization, MPC
Designer uses only the first operating point to define the plant structure and linearize the model.

Define Structure and Linearize Model

Click Define and Linearize.

The app linearizes the Simulink model at the specified operating point using the specified input/
output signals, and adds the linearized plant to the Data Browser.

Also, a default controller, which uses the linearized plant as its internal model, and a default
simulation scenario are created.

MPC Designer uses the input/output signal values at the selected operating point as nominal values.

Linearize Model
After you define the initial MPC structure, you can linearize the Simulink model at different operating
points and import the linearized plants. Doing so is useful for validating controller performance
against modeling errors.

On the MPC Designer tab, in the Import section, click Linearize Model.
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Select Plant Input/Output Signals

In the Simulink Signals for Plant Inputs and Simulink Signals for Plant Outputs sections, the
input/output signal configuration is the same as you specified when initially defining the MPC
structure.

You cannot change the signal types and dimensions once the structure has been defined. However, for
each signal type, you can select different signal lines from your Simulink model. The selected lines
must have the same dimensions as defined in the current MPC structure.

Specify Operating Point

In the Simulink Operating Point section, in the drop-down list, select the operating points at which
to linearize the model.

For information on the different operating point options, see “Specifying Operating Points” on page 2-
29.

Linearize Model and Import Plant

Click Linearize and Import.

MPC Designer linearizes the Simulink model at the defined operating point using the specified
input/output signals, and adds the linearized plant to the Data Browser.

If you select the Use selected operating point to update nominal values as well option, the app
updates the controller nominal values using the operating point signal values.

If you select an option that generates multiple operating points for linearization, the app linearizes
the model at all the specified operating points. The linearized plants are added to the Data Browser
in the same order in which their corresponding operating points are defined. If you choose to update
the nominal values, the app uses the signal values from the first operating point.

Specifying Operating Points
In the Simulink Operating Point section, in the drop-down list, you can select or create operating
points for model linearization. For more information on finding steady-state operating points, see
“About Operating Points” (Simulink Control Design) and “Compute Steady-State Operating Points
from Specifications” (Simulink Control Design).

Select Model Initial Condition

To linearize the model using the initial conditions specified in the Simulink model as the operating
point, select Model Initial Condition.
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The model initial condition is the default operating point for linearization in MPC Designer.

Linearize at Simulation Snapshot Times

To linearize the model at specified simulation snapshot times, select Linearize At. Linearizing at
snapshot times is useful when you know that your model reaches an equilibrium state after a certain
simulation time.

In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
one or more simulation snapshot times. Enter multiple snapshot times as a vector.
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Click OK.

If you enter multiple snapshot times, and you selected Linearize At from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first snapshot time. The nominal values of the MPC controller are defined using the input/
output signal values for this snapshot.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the specified
snapshot times. The linearized plant models are added to the Data Browser in the order specified
in the snapshot time array. If you selected the Use selected operating point to update nominal
values as well option, the nominal values are set using the input/output signal values from the
first snapshot.

Compute Steady-State Operating Point

To compute a steady-state operating point using numerical optimization methods to meet your
specifications, select Trim Model.

In the Trim the model dialog box, enter the specifications for the steady-state values at which you
want to find an operating point. You can specify values for states, input signals, and output signals.
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Click Start Trimming.

MPC Designer creates an operating point for the given specifications. The computed operating point
is added to the Simulink Operating Point drop-down list and is selected.

For examples showing how to specify the conditions for a steady-state operating point search, see
“Compute Steady-State Operating Points from Specifications” (Simulink Control Design).

Compute Operating Point at Simulation Snapshot Time

To compute operating points using simulation snapshots, select Take Simulation Snapshot.
Linearizing the model using operating points computed from simulation snapshots is useful when you
know that your model reaches an equilibrium state after a certain simulation time.
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In the Enter snapshot times to linearize dialog box, in the Simulation snapshot times field, enter
one or more simulation snapshot times. Enter multiple snapshot times as a vector.

Click Take Snapshots.

MPC Designer simulates the Simulink model. At each snapshot time, the current state of the model
is used to create an operating point, which is added to the drop-down list and selected.

If you entered multiple snapshot times, the operating points are stored together as an array. If you
selected Take Simulation Snapshot from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first operating point in the array. The nominal values of the MPC controller are defined using
the input/output signal values for this operating point.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the operating
points in the array. The linearized plant models are added to the Data Browser in the same order
as the operating point array.

In MPC Designer, the Linearize At and Take Simulation Snapshot options generally produce the
same linearized plant and nominal signal values. However, since the Take Simulation Snapshot
option first computes an operating point from the snapshot before linearization, the results can differ.

Select Existing Operating Point

Under Existing Operating Points, select a previously defined operating point at which to linearize
the Simulink model. This option is available if one or more previously created operating points are
available in the drop-down list.
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If the selected operating point represents an operating point array created using multiple snapshot
times, and you selected an operating point from the:

• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first operating point in the array. The nominal values of the MPC controller are defined using
the input/output signal values for this operating point.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the operating
points in the array. The linearized plant models are added to the Data Browser in the same order
as the operating point array.

Select Multiple Operating Points

To linearize the Simulink model at multiple existing operating points, select Linearize at Multiple
Points. This option is available if there are more than one previously created operating points in the
drop-down list.
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In the Specify multiple operating points dialog box, select the operating points at which to linearize
the model.

To change the operating point order, click an operating point in the list and click Up or Down to
move the highlighted operating point within the list.

Click OK.

If you selected Linearize at Multiple Points from the:
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• Define MPC Structure By Linearization dialog box, MPC Designer linearizes the model using only
the first specified operating point. The nominal values of the MPC controller are defined using the
input/output signal values for this operating point.

• Linearize Simulink Model dialog box, MPC Designer linearizes the model at all the specified
operating points. The linearized plant models are added to the Data Browser in the order
specified in the Specify multiple operating points dialog box.

View/Edit Operating Point

To view or edit the selected operating point, under View/Edit, click the Edit option.

In the Edit dialog box, if you created the selected operating point from a simulation snapshot, you can
edit the operating point values.
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If the selected operating point represents an operating point array, in the Select Operating Point
drop-down list, select an operating point to view.

If you obtained the operating point by trimming the model, you can only view the operating point
values.

To set the Simulink model initial conditions to the states in the operating point, click Initialize
model. You can then simulate the model at the specified operating point.
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When setting the model initial conditions, MPC Designer exports the operating point to the MATLAB
workspace. Also, in the Simulink Configuration Parameters dialog box, in the Data Import/Export
section, it selects the Input and Initial state parameters and configures them to use the states and
inputs in the exported operating point.

To reset the model initial conditions, for example if you delete the exported operating point, clear the
Input and Initial state parameters.

Connect Measured Disturbances for Linearization
If your Simulink model has measured disturbance signals, connect them to the corresponding plant
input ports and to the md port of the MPC Controller block. If you have multiple measured
disturbances, connect them to the MPC Controller using a vector signal. As discussed in “Define MPC
Structure By Linearization” on page 2-23, MPC Designer automatically detects the measured
disturbances connected to the MPC Controller block and sets them as plant inputs for linearization.

Since the measured disturbances connected to the md port are selected as linearization inputs, you
must connect the plant measured disturbance input ports to the selected signal line, as shown in the
following:

Correct MD Connection

If you connect the plant measured disturbance input ports to the corresponding signals before the
Mux block, as shown in the following, there is no linearization path from the signals at the md port to
the plant. As a result, when you linearize the plant using MPC Designer, the measured disturbance
channels linearize to zero.
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Incorrect MD Connection

See Also
MPC Designer

Related Examples
• “Linearize Simulink Models” on page 2-16
• “Design MPC Controller in Simulink” on page 3-31
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Identify Plant from Data
When designing a model predictive controller, you can specify the internal predictive plant model
using a linear identified model. You use System Identification Toolbox software to estimate a linear
plant model in one of these forms:

• State-space model — idss
• Transfer function model — idtf
• Polynomial model — idpoly
• Process model — idproc
• Grey-box model — idgrey

You can estimate the plant model programmatically at the command line or interactively using the
System Identification app.

Identify Plant from Data at the Command Line
This example shows how to identify a plant model at the command line. For information on identifying
models using the System Identification app, see “Identify Linear Models Using System Identification
App” (System Identification Toolbox).

Load the measured input/output data.

load plantIO

This command imports the plant input signal, u, plant output signal, y, and sample time, Ts to the
MATLAB® workspace.

Create an iddata object from the input and output data.

mydata = iddata(y,u,Ts);

You can optionally assign channel names and units for the input and output signals.

mydata.InputName = 'Voltage';
mydata.InputUnit = 'V';
mydata.OutputName = 'Position';
mydata.OutputUnit = 'cm';

Typically, you must preprocess identification I/O data before estimating a model. For this example,
remove the offsets from the input and output signals by detrending the data.

mydatad = detrend(mydata);

You can also remove offsets by creating an ssestOptions object and specifying the InputOffset
and OutputOffset options.

For this example, estimate a second-order, linear state-space model using the detrended data. To
estimate a discrete-time model, specify the sample time as Ts.

ss1 = ssest(mydatad,2,'Ts',Ts)

ss1 =
  Discrete-time identified state-space model:
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    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2
   x1   0.8942  -0.1575
   x2   0.1961   0.7616
 
  B = 
         Voltage
   x1  6.008e-05
   x2   -0.01219
 
  C = 
                  x1       x2
   Position    38.24  -0.3835
 
  D = 
             Voltage
   Position        0
 
  K = 
       Position
   x1   0.03572
   x2    0.0223
 
Sample time: 0.1 seconds
  
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 10
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using SSEST on time domain data "mydatad".
Fit to estimation data: 89.85% (prediction focus)   
FPE: 0.0156, MSE: 0.01541                           

You can use this identified plant as the internal prediction model for your MPC controller. When you
do so, the controller converts the identified model to a discrete-time, state-space model.

By default, the MPC controller discards any unmeasured noise components from your identified
model. To configure noise channels as unmeasured disturbances, you must first create an augmented
state-space model from your identified model. For example:

ss2 = ss(ss1,'augmented')

ss2 =
 
  A = 
            x1       x2
   x1   0.8942  -0.1575
   x2   0.1961   0.7616
 
  B = 
          Voltage  v@Position
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   x1   6.008e-05    0.004448
   x2    -0.01219    0.002777
 
  C = 
                  x1       x2
   Position    38.24  -0.3835
 
  D = 
                Voltage  v@Position
   Position           0      0.1245
 
Input groups:           
      Name      Channels
    Measured       1    
     Noise         2    
                        
Sample time: 0.1 seconds
Discrete-time state-space model.

This command creates a state-space model, ss2, with two input groups, Measured and Noise, for
the measured and noise inputs respectively. When you import the augmented model into your MPC
controller, channels in the Noise input group are defined as unmeasured disturbances.

Working with Impulse-Response Models
You can use System Identification Toolbox software to estimate finite step-response or finite impulse-
response (FIR) plant models using measured data. Such models, also known as nonparametric
models, are easy to determine from plant data ([1] and [2]) and have intuitive appeal.

Use the impulseest function to estimate an FIR model from measured data. This function generates
the FIR coefficients encapsulated as an idtf object; that is, a transfer function model with only
numerator coefficients. impulseest is especially effective in situations where the input signal used
for identification has low excitation levels. To design a model predictive controller for this plant, you
can convert the identified FIR plant model to a numeric LTI model. However, this conversion usually
yields a high-order plant, which can degrade the controller design. For example, the numerical
precision issues with high-order plants can affect estimator design. This result is particularly an issue
for MIMO systems.

Model predictive controllers work best with low-order parametric models. Therefore, to design a
model predictive controller using measured plant data, you can:

• Estimate a low-order parametric model using a parametric estimator, such as ssest.
• Initially identify a nonparametric model using impulseest, and then estimate a low-order

parametric model from the response of the nonparametric model. For an example, see [3].
• Initially identify a nonparametric model using impulseest, and then convert the FIR model to a

state-space model using idss. You can then reduce the order of the state-space model using
balred. This approach is similar to the method used by ssregest.

References
[1] Cutler, C., and F. Yocum, "Experience with the DMC inverse for identification," Chemical Process

Control — CPC IV (Y. Arkun and W. H. Ray, eds.), CACHE, 1991.
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[2] Ricker, N. L., "The use of bias least-squares estimators for parameters in discrete-time pulse
response models," Ind. Eng. Chem. Res., Vol. 27, pp. 343, 1988.

[3] Wang, L., P. Gawthrop, C. Chessari, T. Podsiadly, and A. Giles, "Indirect approach to continuous
time system identification of food extruder," J. Process Control, Vol. 14, Number 6, pp. 603–
615, 2004.

See Also
Apps
System Identification

Functions
detrend | iddata | ssest

More About
• “Handling Offsets and Trends in Data” (System Identification Toolbox)
• “Identify Linear Models Using System Identification App” (System Identification Toolbox)
• “Design MPC Controller for Identified Plant Model”
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Design MPC Controllers

• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller at the Command Line” on page 3-20
• “Design MPC Controller in Simulink” on page 3-31
• “Control of a Single-Input-Single-Output Plant” on page 3-47
• “Control of a Multi-Input Single-Output Plant” on page 3-50
• “Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-76
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Design Controller Using MPC Designer
This example shows how to design a model predictive controller for a continuous stirred-tank reactor
(CSTR) using MPC Designer.

CSTR Model

The following differential equations represent the linearized model of a continuous stirred-tank
reactor (CSTR) involving an exothermic reaction:

dC′A
dt = a11C′A + a12T′ + b11T′c + b12C′Ai

dT′
dt = a21C′A + a22T′ + b21T′c + b22C′Ai

where the inputs are:

• CAi — Concentration of reagent A in the feed stream (kgmol/m3)
• Tc — Reactor coolant temperature (degrees C)

and the outputs are:

• T — Reactor temperature (degrees C)
• CA — Residual concentration of reagent A in the product stream (kgmol/m3)

The prime terms, such as C′A, denote a deviation from the nominal steady-state condition at which the
model has been linearized.

Measurement of reagent concentrations is often difficult. For this example, assume that:

• Tc is a manipulated variable.
• CAi is an unmeasured disturbance.
• T is a measured output.
• CA is an unmeasured output.

The model can be described in state-space format:

dx
dt = Ax + Bu

y = Cx + Du

where,
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x =
C′A
T′

, u =
T′c
C′Ai

, y =
T′

C′A

A =
a11 a12
a21 a22

, B =
b11 b12
b21 b22

, C =
0 1
1 0

, D =
0 0
0 0

For this example, the coolant temperature has a limited range of ±10 degrees from its nominal value
and a limited rate of change of ±4 degrees per sample period.

Create a state-space model of a CSTR system.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

Import Plant and Define MPC Structure

mpcDesigner

On the MPC Designer tab, in the Structure section, click MPC Structure.
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In the Define MPC Structure By Importing dialog box, in the Select a plant model or an MPC
controller table, select the CSTR model.

Since CSTR is a stable, continuous-time LTI system, MPC Designer sets the controller sample time to
0.1 Tr, where Tr is the average rise time of CSTR. For this example, in the Specify MPC controller
sample time field, enter a sample time of 1.

By default, all plant inputs are defined as manipulated variables and all plant outputs as measured
outputs. In the Assign plant i/o channels section, assign the input and output channel indices such
that:

• The first input, coolant temperature, is a manipulated variable.
• The second input, feed concentration, is an unmeasured disturbance.
• The first output, reactor temperature, is a measured output.
• The second output, reactant concentration, is an unmeasured output.
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Click Define and Import.

The app imports the CSTR plant to the Data Browser. The following are also added to the Data
Browser:

• mpc1 — Default MPC controller created using sys as its internal model.
• scenario1 — Default simulation scenario.

The app runs the default simulation scenario and updates the Input Response and Output
Response plots.
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Tip To view the response plots side-by-side, on the View tab, in the Tiles section, click Left/Right.

Once you define the MPC structure, you cannot change it within the current MPC Designer session.
To use a different channel configuration, start a new session of the app.
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Define Input and Output Channel Attributes

On the MPC Designer tab, select I/O Attributes.

In the Input and Output Channel Specifications dialog box, in the Name column, specify a meaningful
name for each input and output channel.

In the Unit column, optionally specify the units for each channel.

Since the state-space model is defined using deviations from the nominal operating point, set the
Nominal Value for each input and output channel to 0.

Keep the Scale Factor for each channel at the default value of 1.

Click OK.

The Input Response and Output Response plot labels update to reflect the new signal names and
units.

Configure Simulation Scenario

On the MPC Designer tab, in the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, increase the Simulation duration to 30 seconds.

In the Reference Signals table, in the first row, specify a step Size of 2 and a Time of 5.

In the Signal column, in the second row, select a Constant reference to hold the concentration
setpoint at its nominal value.
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The default scenario is configured to simulate a step change of 2 degrees in the reactor temperature,
T, at a time of 5 seconds.

Click OK.

The response plots update to reflect the new simulation scenario configuration.

In the Data Browser, in the Scenarios section, click scenario1. Click scenario1 a second time,
and rename the scenario to stepT.
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Configure Controller Horizons

On the Tuning tab, in the Horizons section, specify a Prediction horizon of 15 and a Control
horizon of 3.
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The response plots update to reflect the new horizons. The Input Response plot shows that the
control actions for the manipulated variable violate the required coolant temperature constraints.

Define Input Constraints

In the Design section, click Constraints.

In the Constraints dialog box, in the Input Constraints section, enter the coolant temperature upper
and lower bounds in the Min and Max columns respectively.

Specify the rate of change limits in the RateMin and RateMax columns.
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Click OK.

The Input Response plot shows the constrained manipulated variable control actions. Even with the
constrained rate of change, the coolant temperature rises quickly to its maximum limit within three
control intervals.
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Specify Controller Tuning Weights

On the Tuning tab, in the Design section, click Weights.

In the Input Weights table, increase the manipulated variable (MV) Rate Weight to 0.3. Increasing
the MV rate weight penalizes large MV changes in the controller optimization cost function.

In the Output Weights table, keep the default Weight values. By default, all unmeasured outputs
have zero weights.

Since there is only one manipulated variable, if the controller tries to hold both outputs at specific
setpoints, one or both outputs will exhibit steady-state error in their responses. Since the controller
ignores setpoints for outputs with zero weight, setting the concentration output weight to zero allows
reactor temperature setpoint tracking with zero steady-state error.

Click OK.
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The Input Response plot shows the more conservative control actions, which result in a slower
Output Response.

Eliminate Output Overshoot

Suppose the application demands zero overshoot in the output response. On the Performance
Tuning tab, drag the Closed-Loop Performance slider to the left until the Output Response has
no overshoot. Moving this slider to the left simultaneously increases the manipulated variable rate
weight of the controller and decreases the output variable weight, producing a more robust
controller.
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When you adjust the controller tuning weights using the Closed-Loop Performance slider, MPC
Designer does not change the weights you specified in the Weights dialog box. Instead, the slider
controls an adjustment factor, which is used with the user-specified weights to define the actual
controller weights.

This factor is 1 when the slider is centered; its value decreases as the slider moves left and increases
as the slider moves right. The weighting factor multiplies the manipulated variable and output
variable weights and divides the manipulated variable rate weights from the Weights dialog box.

To view the actual controller weights, export the controller to the MATLAB workspace, and view the
Weights property of the exported controller object.

Test Controller Disturbance Rejection

In a process control application, disturbance rejection is often more important than setpoint tracking.
Simulate the controller response to a step change in the feed concentration unmeasured disturbance.

On the MPC Designer tab, in the Scenario section, click Plot Scenario > New Scenario.

In the Simulation Scenario dialog box, set the Simulation duration to 30 seconds.

In the Unmeasured Disturbances table, in the Signal drop-down list, select Step.

In the Time column, specify a step time of 5 seconds.
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Click OK.

The app adds new scenario to the Data Browser and creates new corresponding Input Response
and Output Response plots.

In the Data Browser, in the Scenarios section, rename NewScenario to distReject.
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In the Output Response plots, the controller returns the reactor temperature, T, to a value near its
setpoint as expected. However, the required control actions cause an increase in the output
concentration, CA to 6 kgmol/m3.

Specify Concentration Output Constraint

Previously, you defined the controller tuning weights to achieve the primary control objective of
tracking the reactor temperature setpoint with zero steady-state error. Doing so enables the
unmeasured reactor concentration to vary freely. Suppose that unwanted reactions occur once the
reactor concentration exceeds a 3 kgmol/m3. To limit the reactor concentration, specify an output
constraint.

On the Tuning tab, in the Design section, click Constraints.

In the Constraints dialog box, in the Output Constraints section, the second row of the table,
specify a Max unmeasured output (UO) value of 3.

In the Output Constraints section, click Constraint Softening Settings.

By default, all output constraints are soft, meaning that their MinECR and MaxECR values are
greater than zero. To soften the unmeasured output (UO) constraint further, increase its MaxECR
value.
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Click OK.
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In the Output Response plots, once the reactor concentration, CA, approaches 3 kgmol/m3, the
reactor temperature, T, starts to increase. Since there is only one manipulated variable, the
controller makes a compromise between the two competing control objectives: Temperature control
and constraint satisfaction. A softer output constraint enables the controller to sacrifice the
constraint requirement more to achieve improved temperature tracking.

Since the output constraint is soft, the controller maintain adequate temperature control by allowing
a small concentration constraint violation. In general, depending on your application requirements,
you can experiment with different constraint settings to achieve an acceptable control objective
compromise.

Export Controller

In the Tuning tab, in the Analysis section, click Export Controller  to save the tuned controller,
mpc1, to the MATLAB workspace.

Delete Plants, Controllers, and Scenarios

To delete a plant, controller, or scenario, in the Data Browser, right-click the item you want to
delete, and select Delete. You can also click the item and hit Delete on the keyboard.

You cannot delete the current controller. Also, you cannot delete a plant or scenario if it is the only
listed plant or scenario.
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If a plant is used by any controller or scenario, you cannot delete the plant.

To delete multiple plants, controllers, or scenarios, hold Shift and click each item that you want to
delete.

References
[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,

Wiley, 2004, pp. 34–36 and 94–95.

See Also
MPC Designer

More About
• “Specify Constraints”
• “Tune Weights”
• “Design MPC Controller in Simulink” on page 3-31
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Design MPC Controller at the Command Line
This example shows how to create and test a model predictive controller from the command line.

Define Plant Model

This example uses the plant model described in “Design Controller Using MPC Designer” on page 3-
2. Create a state-space model of the plant and set some of the optional model properties.

A = [-0.0285 -0.0014; -0.0371 -0.1476];
B = [-0.0850 0.0238; 0.0802 0.4462];
C = [0 1; 1 0];
D = zeros(2,2);
CSTR = ss(A,B,C,D);

CSTR.InputName = {'T_c','C_A_i'};
CSTR.OutputName = {'T','C_A'};
CSTR.StateName = {'C_A','T'};
CSTR.InputGroup.MV = 1;
CSTR.InputGroup.UD = 2;
CSTR.OutputGroup.MO = 1;
CSTR.OutputGroup.UO = 2;

Create Controller

To improve the clarity of the example, suppress Command Window messages from the MPC
controller.

old_status = mpcverbosity('off');

Create a model predictive controller with a control interval, or sample time, of 1 second, and with all
other properties at their default values.

Ts = 1;
MPCobj = mpc(CSTR,Ts)

 
MPC object (created on 25-Aug-2020 14:39:23):
---------------------------------------------
Sampling time:      1 (seconds)
Prediction Horizon: 10
Control Horizon:    2

Plant Model:        
                                      --------------
      1  manipulated variable(s)   -->|  2 states  |
                                      |            |-->  1 measured output(s)
      0  measured disturbance(s)   -->|  2 inputs  |
                                      |            |-->  1 unmeasured output(s)
      1  unmeasured disturbance(s) -->|  2 outputs |
                                      --------------
Indices:
  (input vector)    Manipulated variables: [1 ]
                  Unmeasured disturbances: [2 ]
  (output vector)        Measured outputs: [1 ]
                       Unmeasured outputs: [2 ]

Disturbance and Noise Models:
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        Output disturbance model: default (type "getoutdist(MPCobj)" for details)
         Input disturbance model: default (type "getindist(MPCobj)" for details)
         Measurement noise model: default (unity gain after scaling)

Weights:
        ManipulatedVariables: 0
    ManipulatedVariablesRate: 0.1000
             OutputVariables: [1 0]
                         ECR: 100000

State Estimation:  Default Kalman Filter (type "getEstimator(MPCobj)" for details)

Unconstrained

View and Modify Controller Properties

Display a list of the controller properties and their current values.

get(MPCobj)

                          Ts: 1                   
       PredictionHorizon (P): 10                  
          ControlHorizon (C): 2                   
                       Model: [1x1 struct]        
   ManipulatedVariables (MV): [1x1 struct]        
        OutputVariables (OV): [1x2 struct]        
   DisturbanceVariables (DV): [1x1 struct]        
                 Weights (W): [1x1 struct]        
                   Optimizer: [1x1 struct]        
                       Notes: {}                  
                    UserData: []                  
                     History: 25-Aug-2020 14:39:23

The displayed History value will be different for your controller, since it depends on when the
controller was created. For a description of the editable properties of an MPC controller, enter
mpcprops at the command line.

Use dot notation to modify these properties. For example, change the prediction horizon to 15.

MPCobj.PredictionHorizon = 15;

You can abbreviate property names provided that the abbreviation is unambiguous.

Many of the controller properties are structures containing additional fields. Use dot notation to view
and modify these field values. For example, you can set the measurement units for the controller
output variables. The OutputUnit property is for display purposes only and is optional.

MPCobj.Model.Plant.OutputUnit = {'Deg C','kmol/m^3'};

By default, the controller has no constraints on manipulated variables and output variables. You can
view and modify these constraints using dot notation. For example, set constraints for the controller
manipulated variable.

MPCobj.MV.Min = -10;
MPCobj.MV.Max = 10;
MPCobj.MV.RateMin = -3;
MPCobj.MV.RateMax = 3;
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You can also view and modify the controller tuning weights. For example, modify the weights for the
manipulated variable rate and the output variables.

MPCobj.W.ManipulatedVariablesRate = 0.3;
MPCobj.W.OutputVariables = [1 0];

You can also define time-varying constraints and weights over the prediction horizon, which shifts at
each time step. Time-varying constraints have a nonlinear effect when they are active. For example,
to force the manipulated variable to change more slowly towards the end of the prediction horizon,
enter:

MPCobj.MV.RateMin = [-4; -3.5; -3; -2.5];

MPCobj.MV.RateMax = [4; 3.5; 3; 2.5];

The -2.5 and 2.5 values are used for the fourth step and beyond.

Similarly, you can specify different output variable weights for each step of the prediction horizon.
For example, enter:

MPCobj.W.OutputVariables = [0.1 0; 0.2 0; 0.5 0; 1 0];

You can also modify the disturbance rejection characteristics of the controller. See setEstimator,
setindist, and setoutdist for more information.

Review Controller Design

Generate a report on potential run-time stability and performance issues.

review(MPCobj)
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In this example, the review command found two potential issues with the design. The first warning
asks whether the user intends to have a weight of zero on the C_A output. The second warning
advises the user to avoid having hard constraints on both MV and MVRate.

Perform Linear Simulations

Use the sim function to run a linear simulation of the system. For example, simulate the closed-loop
response of MPCobj for 26 control intervals. Specify setpoints of 2 and 0 for the reactor temperature
and the residual concentration respectively. The setpoint for the residual concentration is ignored
because the tuning weight for the second output is zero.

T = 26;
r = [0 0; 2 0];
sim(MPCobj,T,r)
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You can modify the simulation options using mpcsimopt. For example, run a simulation with the
manipulated variable constraints turned off.

MPCopts = mpcsimopt;
MPCopts.Constraints = 'off';
sim(MPCobj,T,r,MPCopts)
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The first move of the manipulated variable now exceeds the specified 3-unit rate constraint.

You can also perform a simulation with a plant/model mismatch. For example, define a plant with 50%
larger gains than those in the model used by the controller.

Plant = 1.5*CSTR;
MPCopts.Model = Plant;
sim(MPCobj,T,r,MPCopts)
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The plant/model mismatch degrades controller performance slightly. Degradation can be severe and
must be tested on a case-by-case basis.

Other options include the addition of a specified noise sequence to the manipulated variables or
measured outputs, open-loop simulations, and a look-ahead option for better setpoint tracking or
measured disturbance rejection.

Store Simulation Results

Store the simulation results in the MATLAB Workspace.

[y,t,u] = sim(MPCobj,T,r);

The syntax suppresses automatic plotting and returns the simulation results. You can use the results
for other tasks, including custom plotting. For example, plot the manipulated variable and both
output variables in the same figure.

figure
subplot(2,1,1)
plot(t,u)
title('Inputs')
legend('T_c')
subplot(2,1,2)
plot(t,y)
title('Outputs')
legend('T','C_A')
xlabel('Time')
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Restore the mpcverbosity setting.

mpcverbosity(old_status);

See Also
mpc | review | sim

More About
• “MPC Modeling” on page 2-2
• “Design Controller Using MPC Designer” on page 3-2
• “Design MPC Controller in Simulink” on page 3-31
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Design MPC Controller in Simulink
This example shows how to design a model predictive controller for a continuous stirred-tank reactor
(CSTR) in Simulink using MPC Designer.

This example requires Simulink Control Design software to define the MPC structure by linearizing a
nonlinear Simulink model.

If you do not have Simulink Control Design software, you must first create an mpc object in the
MATLAB workspace. For more information, see “Design Controller Using MPC Designer” on page 3-2
and “Design MPC Controller at the Command Line” on page 3-20.

CSTR Model

A CSTR is a jacketed nonadiabatic tank reactor commonly used in the process industry.

An inlet stream of reagent A feeds into the tank at a constant rate. A first-order, irreversible,
exothermic reaction takes place to produce the product stream, which exits the reactor at the same
rate as the input stream.

The CSTR model has three inputs:

• Feed Concentration (CAi) — The concentration of reagent A in the feed stream (kgmol/m3)
• Feed Temperature (Ti) — Feed stream temperature (K)
• Coolant Temperature (Tc) — Reactor coolant temperature (K)

The two model outputs are:
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• CSTR Temperature (T) — Reactor temperature (K)
• Concentration (CA) — Concentration of reagent A in the product stream, also referred to as the

residual concentration (kgmol/m3)

The control objective is to maintain the residual concentration, CA, at its nominal setpoint by
adjusting the coolant temperature, Tc. Changes in the feed concentration, CAi, and feed temperature,
Ti, cause disturbances in the CSTR reaction.

The reactor temperature, T, is usually controlled. However, for this example, ignore the reactor
temperature, and assume that the residual concentration is measured directly.

Open Simulink Model
open_system('CSTR_ClosedLoop')

Connect Measured Disturbance To MPC Controller Block

In the Simulink model window, double-click the MPC Controller block.

In the Block Parameters dialog box, on the General tab, in the Additional Inports section, check the
Measured disturbance (md) option.
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Click Apply to add the md inport to the controller block.

In the Simulink model window, connect the Feed Temperature block output to the md inport.

Open MPC Designer App

In the MPC Controller Block Parameters dialog box, click Design to open MPC Designer.

Note This step requires Simulink Control Design software to linearize the Simulink model. For more
information, see “Linearize Simulink Models Using MPC Designer” on page 2-23.

If you do not have Simulink Control Design software, you must first create an mpc object in the
MATLAB workspace.

Define MPC Structure

In MPC Designer, on the MPC Designer tab, in the Structure section, click MPC Structure.

In the Define MPC Structure By Linearization dialog box, in the Controller Sample Time section,
specify a sample time of 0.1.

In the MPC Structure section, click Change I/O Sizes to add the unmeasured disturbance and
measured disturbance signal dimensions.

In the MPC Block Signal Sizes dialog box, specify the number of input/output channels of each type:
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Click OK.

In the Define MPC Structure By Linearization dialog box, in the Simulink Signals for Plant Inputs
section, the app adds a row for Unmeasured Disturbances (UD).
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The manipulated variable, measured disturbance, and measured output are already assigned to their
respective Simulink signal lines, which are connected to the MPC Controller block.

In the Simulink Signals for Plant Inputs section, select the Unmeasured Disturbances (UD)
row, and click Select Signals.

In the Simulink model window, click the output signal from the Feed Concentration block.

The signal is highlighted and its block path is added to the Select Signal dialog box.
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In the Select Signals dialog box, click Add Signal(s).

In the Define MPC Structure By Linearization dialog box, in the Simulink Signals for Plant Inputs
table, the Block Path for the unmeasured disturbance signal is updated.

Linearize Simulink Model

Linearize the Simulink model at a steady-state equilibrium operating point where the residual
concentration is 2 kgmol/m3. To compute such an operating point, add the CA signal as a trim output
constraint, and specify its target constraint value.

In the Simulink model window, right-click the signal line connected to CA outport of the CSTR block,
and select Linear Analysis Points > Trim Output Constraint.

The CA signal can now be used to define output specifications for calculating a model steady-state
operating point.

In the Define MPC Structure By Linearization dialog box, in the Simulink Operating Point section,
in the drop-down list, under Create New Operating Point, click Trim Model.
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In the Trim the model dialog box, in the Outputs tab, check the box in the Known column for
Channel-1 and specify a Value of 2.

This setting constrains the value of the output signal during the operating point search to a known
value.

Click Start Trimming.

In the Define MPC Structure By Linearization dialog box, in the Simulink Operating Point section,
the computed operating point, op_trim1, is added to the drop-down list and selected.

In the drop-down list, under View/Edit, click Edit op_trim1.
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In the Edit dialog box, on the State tab, in the Actual dx column, the near-zero derivative values
indicate that the computed operating point is at steady-state.

Click Initialize model to set the initial states of the Simulink model to the operating point values in
the Actual Values column. Doing so enables you to later simulate the Simulink model at the
computed operating point rather than at the default model initial conditions.

In the Initialize Model dialog box, click OK.

When setting the model initial conditions, MPC Designer exports the operating point to the MATLAB
workspace. Also, in the Simulink Configuration Parameters dialog box, in the Data Import/Export
section, it selects the Input and Initial state parameters and configures them to use the states and
inputs in the exported operating point.

To reset the model initial conditions, for example if you delete the exported operating point, clear the
Input and Initial state parameters.

Close the Edit dialog box.

In the Define MPC Structure By Linearization dialog box, click Define and Linearize to linearize the
model.

The linearized plant model is added to the Data Browser. Also, the following are added to the Data
Browser:

• A default MPC controller created using the linearized plant as an internal prediction model
• A default simulation scenario

Define Input/Output Channel Attributes

On the MPC Designer tab, in the Structure section, click I/O Attributes.
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In the Input and Output Channel Specifications dialog box, in the Name column, specify meaningful
names for each input and output channel.

In the Unit column, specify appropriate units for each signal.

The Nominal Value for each signal is the corresponding steady-state value at the computed
operating point.

Click OK.

Define Disturbance Rejection Simulation Scenarios

The primary objective of the controller is to hold the residual concentration, CA, at the nominal value
of 2 kgmol/m3. To do so, the controller must reject both measured and unmeasured disturbances.

In the Scenario section, click Edit Scenario > scenario1.

In the Simulation Scenario dialog box, in the Reference Signals table, in the Signal drop-down list
select Constant to hold the output setpoint at its nominal value.

In the Measured Disturbances table, in the Signal drop-down list, select Step.

Specify a step Size of 10 and a step Time of 0.
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Click OK.

In the Data Browser, under Scenarios, click scenario1. Click scenario1 a second time, and
rename it MD_reject.

In the Scenario section, click Plot Scenario > New Scenario.

In the Simulation Scenario dialog box, in the Unmeasured Disturbances table, in the Signal drop-
down list, select Step.

Specify a step Size of 1 and a step Time of 0.
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Click OK.

In the Data Browser, under Scenarios, rename NewScenario to UD_reject.

Arrange Output Response Plots

To make viewing the tuning results easier, arrange the plot area to display the Output Response plots
for both scenarios at the same time.

On the View tab, in the Tiles section, click Top/Bottom.

The plot display area changes to display the Input Response plots above the Output Response plots.

Drag the MD_reject: Output tab up to the top plot.

Tune Controller Performance

In the Tuning tab, in the Horizon section, specify a Prediction horizon of 20 and a Control
horizon of 5.

The Output Response plots update based on the new horizon values.

Use the default controller constraint and weight configurations.
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In the Performance Tuning section, drag the Closed-Loop Performance slider to the right, which
leads to tighter control of outputs and more aggressive control moves. Drag the slider until the
MD_reject: Output response reaches steady state in less than 2 seconds.

Drag the State Estimation slider to the right, which leads to more aggressive unmeasured
disturbance rejection. Drag the slider until the UD_reject: Output response reaches steady state in
less than 3 seconds.

3 Design MPC Controllers

3-42



Update Simulink Model with Tuned Controller

In the Analysis section, click the Update and Simulate arrow .

Under Update and Simulate, click Update Block Only. The app exports the tuned controller, mpc1,
to the MATLAB workspace. In the Simulink model, the MPC Controller block is updated to use the
exported controller.

Simulate Unmeasured Disturbance Rejection

In the Simulink model window, change the simulation duration to 5 seconds.
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The model initial conditions are set to the nominal operating point used for linearization.

Double-click the Feed Concentration block.

In the Block Parameters dialog box, enter a Constant Value of 11 to simulate a unit step at time
zero.

Click Apply.

In the Simulink model window, click Run.
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The Concentration output response is similar to the UD_reject response, however the settling time
is around 1 second later. The different result is due to the mismatch between the linear plant used in
the MPC Designer simulation and the nonlinear plant in the Simulink model.

Simulate Measured Disturbance Rejection

In the Block Parameters: Feed Concentration dialog box, enter a Constant Value of 10 to return the
feed concentration to its nominal value.

Click OK.

In the Simulink model window, double-click the Feed Temperature block.

In the Block Parameters: Feed Temperature dialog box, enter a Constant Value of 310 to simulate a
step change of size 10 at time zero.

Click OK.

In the Simulink model window, click Run.
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The Concentration output response is similar to the MD_reject response from the MPC Designer
simulation.

References
[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition,

Wiley, 2004, pp. 34–36 and 94–95.

See Also
MPC Controller | MPC Designer

More About
• “Tune Weights”
• “Linearize Simulink Models” on page 2-16
• “Design Controller Using MPC Designer” on page 3-2
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Control of a Single-Input-Single-Output Plant
This example shows how to control a double integrator plant under input saturation in Simulink®.

Define Plant Model

The linear open-loop dynamic model is a double integrator.

plant = tf(1,[1 0 0]);

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons.

Ts = 0.1;
p = 10;
m = 3;
mpcobj = mpc(plant, Ts, p, m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify actuator saturation limits as MV constraints.

mpcobj.MV = struct('Min',-1,'Max',1);

Simulate Using Simulink

To run this example, Simulink is required.

if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink is required to run this example.')
    return
end

Simulate closed-loop control of the linear plant model in Simulink. The MPC Controller block is
configured to use the mpcobj object as its controller.

mdl = 'mpc_doubleint';
open_system(mdl)
sim(mdl)

-->Converting the "Model.Plant" property of "mpc" object to state-space.
-->Converting model to discrete time.
   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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The closed-loop response shows good setpoint tracking performance.

bdclose(mdl)

See Also
MPC Controller | MPC Designer | mpc

More About
• “Control of a Multi-Input Single-Output Plant” on page 3-50
• “Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-76
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Control of a Multi-Input Single-Output Plant
This example shows how to design model predictive controller with one measured output, one
manipulated variable, one measured disturbance, and one unmeasured disturbance in a typical
workflow.

Define Plant Model

The discrete-time linear open-loop dynamic model is defined below with sample time Ts.

sys = ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));
Ts = 0.2;
model = c2d(sys,Ts);

Design MPC Controller

Define type of input signals: the first signal is a manipulated variable, the second signal is a measured
disturbance, the third one is an unmeasured disturbance.

model = setmpcsignals(model,'MV',1,'MD',2,'UD',3);

Create the controller object with sampling period, prediction and control horizons.

mpcobj = mpc(model,Ts,10,3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.

mpcobj.MV = struct('Min',0,'Max',1,'RateMin',-10,'RateMax',10);

For unmeasured input disturbances, its model is an integrator driven by white noise with variance =
1000.

mpcobj.Model.Disturbance = tf(sqrt(1000),[1 0]);

Simulate Closed-Loop Response Using the sim Command

Specify simulation parameters.

Tstop = 30;                               % simulation time
Tf = round(Tstop/Ts);                     % number of simulation steps
r = ones(Tf,1);                           % reference signal
v = [zeros(Tf/3,1);ones(2*Tf/3,1)];       % measured disturbance signal

Run the closed-loop simulation and plot results.

sim(mpcobj,Tf,r,v)

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

3 Design MPC Controllers

3-50



 Control of a Multi-Input Single-Output Plant

3-51



Specify disturbance and noise signals in simulation option object.

SimOptions = mpcsimopt(mpcobj);
d = [zeros(2*Tf/3,1);-0.5*ones(Tf/3,1)];
SimOptions.Unmeas = d;                          % unmeasured input disturbance signal
SimOptions.OutputNoise=.001*(rand(Tf,1)-.5);    % output measurement noise
SimOptions.InputNoise=.05*(rand(Tf,1)-.5);      % noise on manipulated variables

Run the closed-loop simulation and save the results to the workspace.

[y,t,u,xp] = sim(mpcobj,Tf,r,v,SimOptions);

Plot results.

figure
subplot(2,1,1)
plot(0:Tf-1,y,0:Tf-1,r)
title('Output')
grid
subplot(2,1,2)
plot(0:Tf-1,u)
title('Input')
grid
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Simulate Closed-Loop Response with Model Mismatch

Test the robustness of the MPC controller against a model mismatch. Specify the true plant
simModel, with a nominal output value of 0.1.

simModel = ss(tf({1,1,1},{[1 .8 1],[1 2],[.6 .6 1]}));
simModel = setmpcsignals(simModel,'MV',1,'MD',2,'UD',3);
simModel = struct('Plant',simModel);
simModel.Nominal.Y = 0.1;
simModel.Nominal.X = -.1*[1 1 1 1 1];

Create option object.

SimOptions.Model = simModel;
SimOptions.plantinit = [0.1 0 -0.1 0 .05];  % Initial state of the true plant
SimOptions.OutputNoise = [];                % remove output measurement noise
SimOptions.InputNoise = [];                 % remove noise on manipulated variables

% Run the closed-loop simulation and plot results.
sim(mpcobj,Tf,r,v,SimOptions)

-->Converting model to discrete time.
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Soften Constraints

Relax the constraints on manipulated variables from hard to soft.

mpcobj.MV.MinECR = 1;
mpcobj.MV.MaxECR = 1;

Define an output constraint.

mpcobj.OV.Max = 1.1;

Run a new closed-loop simulation.

sim(mpcobj,Tf,r,v)

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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MV constraint has been slightly violated while MO constraint has been violated more. Penalize more
output constraint and rerun the simulation.

mpcobj.OV.MaxECR = 0.001;  % The closer to zero, the harder the constraint
sim(mpcobj,Tf,r,v)

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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Now MO constraint has been slightly violated while MV constraint has been violated more as
expected.

Change Kalman Gains Used in the Built-In State Estimator

Model Predictive Control Toolbox™ software provides a default Kalman filter to estimate the state of
plant, disturbance, and noise models. You can change the Kalman gains.

First, retrieve the default Kalman gains and state-space matrices.

[L,M,A1,Cm1] = getEstimator(mpcobj);

The default observer poles are:

e = eig(A1-A1*M*Cm1)

e =

   0.5708 + 0.4144i
   0.5708 - 0.4144i
   0.4967 + 0.0000i
   0.9334 + 0.1831i
   0.9334 - 0.1831i
   0.8189 + 0.0000i

Design a new state estimator by pole-placement.
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poles = [.8 .75 .7 .85 .6 .81];
L = place(A1',Cm1',poles)';
M = A1\L;
setEstimator(mpcobj,L,M);

Simulate Open-Loop Response

Test the behavior of plant in open-loop using the sim command. Set the OpenLoop flag to on, and
provide the sequence of manipulated variables that excite the system.

SimOptions.OpenLoop = 'on';
SimOptions.MVSignal = sin((0:Tf-1)'/10);

As the reference signal will be ignored, we can avoid specifying it.

sim(mpcobj,Tf,[],v,SimOptions)

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
-->Converting model to discrete time.
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Examine Steady-State Offset

To examine whether the MPC controller will be able to reject constant output disturbances and track
constant setpoint with zero offsets in steady-state, compute the DC gain from output disturbances to
controlled outputs using the cloffset command.

DC = cloffset(mpcobj);
fprintf('DC gain from output disturbance to output = %5.8f (=%g) \n',DC,DC);

DC gain from output disturbance to output = 0.00000000 (=5.55112e-15) 

A zero gain means that the output will track the desired setpoint.

Simulate Controller Using mpcmove

First, obtain the discrete-time state-space matrices of the plant.

[A,B,C,D] = ssdata(model);
Tstop = 5;                  % Simulation time
x = [0 0 0 0 0]';           % Initial state of the plant
xmpc = mpcstate(mpcobj);    % Initial state of the MPC controller
r = 1;                      % Output reference signal

Store the closed-loop MPC trajectories in arrays YY, UU, and XX.

YY=[];
UU=[];
XX=[];
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Run the simulation loop

for t=0:round(Tstop/Ts)-1
    % Store states
    XX = [XX,x]; %#ok<*AGROW>
    % Define measured disturbance signal
    v = 0;
    if t*Ts>=10
        v = 1;
    end
    % Define unmeasured disturbance signal
    d = 0;
    if t*Ts>=20
       d = -0.5;
    end
    % Plant equations: output update (no feedthrough from MV to Y)
    y = C*x + D(:,2)*v + D(:,3)*d;
    YY = [YY,y];
    % Compute MPC action
    u = mpcmove(mpcobj,xmpc,y,r,v);
    % Plant equations: state update
    x = A*x + B(:,1)*u + B(:,2)*v + B(:,3)*d;
    UU = [UU,u];
end

Plot the results.

figure
subplot(2,1,1)
plot(0:Ts:Tstop-Ts,YY)
grid
title('Output')
subplot(2,1,2)
plot(0:Ts:Tstop-Ts,UU)
grid
title('Input')
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If at any time during the simulation you want to check the optimal predicted trajectories, it can be
returned by mpcmove as well. Assume you want to start from the current state and have a set-point
change to 0.5, and assume the measured disturbance is gone.

r = 0.5;
v = 0;
[~,Info] = mpcmove(mpcobj,xmpc,y,r,v);

Extract the optimal predicted trajectories.

topt = Info.Topt;
yopt = Info.Yopt;
uopt = Info.Uopt;
figure
subplot(2,1,1)
stairs(topt,yopt)
title('Optimal sequence of predicted outputs')
grid
subplot(2,1,2)
stairs(topt,uopt)
title('Optimal sequence of manipulated variables')
grid
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Linear Representation of MPC Controller

When the constraints are not active, the MPC controller behaves like a linear controller. You can get
the state-space form of the MPC controller.

LTI = ss(mpcobj,'rv');

Get the state-space matrices for the linearized controller.

[AL,BL,CL,DL] = ssdata(LTI);

Simulate linear MPC closed-loop system and compare the linearized MPC controller with the original
MPC controller with constraints turned off.

mpcobj.MV = [];           % No input constraints
mpcobj.OV = [];           % No output constraints
Tstop = 5;                %Simulation time
xL = zeros(size(BL,1),1); % Initial state of linearized MPC controller
x = [0 0 0 0 0]';         % Initial state of plant
y = 0;                    % Initial measured output
r = 1;                    % Output reference set-point
u = 0;                    % Previous input command
YY = [];
XX = [];
xmpc = mpcstate(mpcobj);
for t = 0:round(Tstop/Ts)-1
    YY = [YY,y];
    XX = [XX,x];
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    v = 0;
    if t*Ts>=10
        v = 1;
    end
    d = 0;
    if t*Ts>=20
        d = -0.5;
    end
    uold = u;
    % Compute the linear MPC control action
    u = CL*xL+DL*[y;r;v];
    % Compare the input move with the one provided by MPCMOVE
    uMPC = mpcmove(mpcobj,xmpc,y,r,v);
    dispStr(t+1) = {sprintf('t=%5.2f, u=%7.4f (provided by LTI), u=%7.4f (provided by MPCOBJ)',t*Ts,u,uMPC)}; %#ok<*SAGROW>
    % Update plant equations
    x = A*x + B(:,1)*u + B(:,2)*v + B(:,3)*d;
    % Update controller equations
    xL = AL*xL + BL*[y;r;v];
    % Update output equations
    y = C*x + D(:,1)*u + D(:,2)*v + D(:,3)*d;
end

   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Display the results.

for t=0:round(Tstop/Ts)-1
    disp(dispStr{t+1});
end

t= 0.00, u= 5.2478 (provided by LTI), u= 5.2478 (provided by MPCOBJ)
t= 0.20, u= 3.0134 (provided by LTI), u= 3.0134 (provided by MPCOBJ)
t= 0.40, u= 0.2281 (provided by LTI), u= 0.2281 (provided by MPCOBJ)
t= 0.60, u=-0.9952 (provided by LTI), u=-0.9952 (provided by MPCOBJ)
t= 0.80, u=-0.8749 (provided by LTI), u=-0.8749 (provided by MPCOBJ)
t= 1.00, u=-0.2022 (provided by LTI), u=-0.2022 (provided by MPCOBJ)
t= 1.20, u= 0.4459 (provided by LTI), u= 0.4459 (provided by MPCOBJ)
t= 1.40, u= 0.8489 (provided by LTI), u= 0.8489 (provided by MPCOBJ)
t= 1.60, u= 1.0192 (provided by LTI), u= 1.0192 (provided by MPCOBJ)
t= 1.80, u= 1.0511 (provided by LTI), u= 1.0511 (provided by MPCOBJ)
t= 2.00, u= 1.0304 (provided by LTI), u= 1.0304 (provided by MPCOBJ)
t= 2.20, u= 1.0053 (provided by LTI), u= 1.0053 (provided by MPCOBJ)
t= 2.40, u= 0.9920 (provided by LTI), u= 0.9920 (provided by MPCOBJ)
t= 2.60, u= 0.9896 (provided by LTI), u= 0.9896 (provided by MPCOBJ)
t= 2.80, u= 0.9925 (provided by LTI), u= 0.9925 (provided by MPCOBJ)
t= 3.00, u= 0.9964 (provided by LTI), u= 0.9964 (provided by MPCOBJ)
t= 3.20, u= 0.9990 (provided by LTI), u= 0.9990 (provided by MPCOBJ)
t= 3.40, u= 1.0002 (provided by LTI), u= 1.0002 (provided by MPCOBJ)
t= 3.60, u= 1.0004 (provided by LTI), u= 1.0004 (provided by MPCOBJ)
t= 3.80, u= 1.0003 (provided by LTI), u= 1.0003 (provided by MPCOBJ)
t= 4.00, u= 1.0001 (provided by LTI), u= 1.0001 (provided by MPCOBJ)
t= 4.20, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)
t= 4.40, u= 0.9999 (provided by LTI), u= 0.9999 (provided by MPCOBJ)
t= 4.60, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)
t= 4.80, u= 1.0000 (provided by LTI), u= 1.0000 (provided by MPCOBJ)

Plot the results.

 Control of a Multi-Input Single-Output Plant

3-65



figure
plot(0:Ts:Tstop-Ts,YY)
grid

Running a closed-loop where all constraints are turned off is easy using sim. We just specify an
option in the SimOptions structure:

SimOptions = mpcsimopt(mpcobj);
SimOptions.Constr = 'off';    % Remove all MPC constraints
SimOptions.Unmeas = d;        % unmeasured input disturbance
sim(mpcobj,Tf,r,v,SimOptions);
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Simulate Using Simulink®

To run this example, Simulink® is required.

if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink(R) is required to run this part of the example.')
    return
end

Recreate the MPC controller.

mpcobj = mpc(model,Ts,10,3);
mpcobj.MV = struct('Min',0,'Max',1,'RateMin',-10,'RateMax',10);
mpcobj.Model.Disturbance = tf(sqrt(1000),[1 0]);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

The continuous-time plant to be controlled has the following state-space realization:

[A,B,C,D] = ssdata(sys);

Simulate closed-loop MPC in Simulink.

mdl1 = 'mpc_miso';
open_system(mdl1)
sim(mdl1)
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   Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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Next, run a simulation with sinusoidal output noise. Assume output measurements are affected by a
sinusoidal measurement noise of frequency 0.1 Hz. You want to inform the MPC object about this so
that state estimates can be improved.

omega = 2*pi/10;
mpcobj.Model.Noise = 0.5*tf(omega^2,[1 0 omega^2]);

Revise the MPC design and specify a white Gaussian noise unmeasured disturbance with zero mean
and variance 0.1.
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mpcobj.Model.Disturbance = tf(0.1);
mpcobj.weights = struct('MV',0,'MVRate',0.1,'OV',0.005);
mpcobj.predictionhorizon = 40;
mpcobj.controlhorizon = 3;

Run the simulation.

Tstop = 150;
mdl2 = 'mpc_misonoise';
open_system(mdl2)
sim(mdl2,Tstop)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->A feedthrough channel in NoiseModel was inserted to prevent problems with estimator design.
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bdclose(mdl1)
bdclose(mdl2)

See Also
MPC Controller | MPC Designer | mpc

More About
• “Control of a Single-Input-Single-Output Plant” on page 3-47
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• “Control of a Multi-Input Multi-Output Nonlinear Plant” on page 3-76
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Control of a Multi-Input Multi-Output Nonlinear Plant
This example shows how to design a model predictive controller for a multi-input multi-output
nonlinear plant. The plant has 3 manipulated variables and 2 measured outputs.

Linearize Nonlinear Plant

To run this example, Simulink® and Simulink Control Design™ are required.

if ~mpcchecktoolboxinstalled('simulink')
    disp('Simulink(R) is required to run this example.')
    return
end
if ~mpcchecktoolboxinstalled('slcontrol')
    disp('Simulink Control Design(R) is required to run this example.')
    return
end

The nonlinear plant is implemented in Simulink model mpc_nonlinmodel and linearized at the
default operating condition using the linearize command from Simulink Control Design.

plant = linearize('mpc_nonlinmodel');

Assign names to I/O variables.

plant.InputName = {'Mass Flow';'Heat Flow';'Pressure'};
plant.OutputName = {'Temperature';'Level'};
plant.InputUnit = {'kg/s' 'J/s' 'Pa'};
plant.OutputUnit = {'K' 'm'};

Design MPC Controller

Create the controller object with sampling period, prediction and control horizons:

Ts = 0.2;
p = 5;
m = 2;
mpcobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.

Specify MV constraints.

mpcobj.MV = struct('Min',{-3;-2;-2},'Max',{3;2;2},'RateMin',{-1000;-1000;-1000});

Define weights on manipulated and controlled variables.

mpcobj.Weights = struct('MV',[0 0 0],'MVRate',[.1 .1 .1],'OV',[1 1]);

Simulate Using Simulink

Run simulation.

mdl1 = 'mpc_nonlinear';
open_system(mdl1)
sim(mdl1)
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-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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Modify MPC Design to Track Ramp Signals

In order to track a ramp, a triple integrator is defined as an output disturbance model on both
outputs.

outdistmodel = tf({1 0;0 1},{[1 0 0 0],1;1,[1 0 0 0]});
setoutdist(mpcobj,'model',outdistmodel);

Run simulation.

mdl2 = 'mpc_nonlinear_setoutdist';
open_system(mdl2)
sim(mdl2)

-->Converting model to discrete time.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.
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Simulate without Constraints

When the constraints are not active, the MPC controller behaves like a linear controller.

mpcobj.MV = [];

Reset output disturbance model to default

setoutdist(mpcobj,'integrators');

The input to the linear controller LTI is the vector [ym;r], where ym is the vector of measured
outputs, and r is the vector of output references.

LTI = ss(mpcobj,'r');

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming white noise on each measured output channel.

Run simulation.

refs = [1;1];                  % output references are step signals
mdl3 = 'mpc_nonlinear_ss';
open_system(mdl3)
sim(mdl3)
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Compare Simulation Results
fprintf('Compare output trajectories: ||ympc-ylin|| = %g\n',norm(ympc-ylin));
disp('The MPC controller and the linear controller produce the same closed-loop trajectories.');

Compare output trajectories: ||ympc-ylin|| = 1.68523e-14
The MPC controller and the linear controller produce the same closed-loop trajectories.

bdclose(mdl1)
bdclose(mdl2)
bdclose(mdl3)

See Also
MPC Controller | MPC Designer | mpc
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More About
• “Control of a Single-Input-Single-Output Plant” on page 3-47
• “Control of a Multi-Input Single-Output Plant” on page 3-50
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